Close

OpenFOAM for Chemical and Process Engineering

OpenFOAM is developed, maintained and redesigned for CFD simulation in Chemical and Process Engineering.  It includes the following functionality for a variety of applications in this field of engineering.

  • Interface-capturing Multiphase: Volume of fluid (VoF) representation of multiple, immiscible fluids, using the MULES algorithm to bound phase fraction, and specialised numerics to maintain a sharp interface.  Simulates interface motion, breakup, viscous and inertial forces.
  • Dispersed Multiphase: Euler-Euler simulation of dispersed phases, with sub-grid-scale interface modelling, heat and mass transfer. Suitable for bubble flows, steam injection and fluidised particle beds, etc.
  • Particles: Fully coupled Lagrangian modelling of both sparse and dense particle flows. Simulation of spray combustion or cooling, dense fluidisation, separation and filtration devices, etc. Particle collision modelling either by fully resolved DPM, or Eulerian MPPIC method.
  • Thermodynamic Modelling: Several thermodynamic and transport models, including real-gas effects, liquid and solid properties.
  • Turbulence: Reynolds averaged models, stress closures, large eddy simulation, multiphase models and extensive boundary models.
  • Heat Transfer: Conjugate heat transfer simulation of multiple fluid /solid regions. Natural convection. Boundary coupling and modelling.
  • Reactions: Simulation of single and multi-phase turbulent reacting flows. A variety of combustion modelling and chemistry evaluation approaches, ODE integration, automatic tabulation and mechanism reduction.
  • Mesh Generation: Block-structured and automatic hexahedral-dominant mesh generation for engineering CAD geometries.
  • Mesh Motion: AMI and MRF for rotating geometries, e.g. mixers or impellers. Coupling with solid body motion. Adaptive refinement.

Process Engineering Consortium

OpenFOAM has been used for many years by many industrial companies, research institutes and academic organisations in chemical and process engineering.  In 2012, the Process Engineering Consortium was founded by organisations who share a common interest in the sustainability, maintenance and development of OpenFOAM.  The member organisations support OpenFOAM and the OpenFOAM Foundation through the following activities.

  • Pooling resources to fund general code developments, repairs and redesign.
  • Meeting annually to review the latest OpenFOAM development and maintenance work.
  • Steering developments of new functionality.
  • Cultivating collaborations between the OpenFOAM development team and modelling groups.
  • Contributing example test cases, testing new functionality and providing feedback to developers.

Benefits to OpenFOAM

Developments and maintenance work that has been funded and supported by the Consortium include the following.

Current Members

Logo Image
Logo Image
Logo Image
Logo Image
Logo Image
Logo Image
Logo Image
Logo Image
Logo Image
{"slides_column":"4","slides_scroll":"1","dots":"true","arrows":"true","autoplay":"true","autoplay_interval":"2000","loop":"true","rtl":"false","speed":"1000","center_mode":"false"}

Membership of the Process Consortium

The Process Engineering Consortium welcomes enquiries from organisations involved in chemical and process engineering.  If you wish to enquire about membership, please complete the form below and a member of the Consortium will respond shortly.  To demonstrate the enquiry is genuine, you must use a company email address.

Name

COMPANY Email Address (private email addresses will be ignored)

Company/Organisation Name

Country

Type of Company/Organisation

Check the reCAPTCHA box below (wait for it to load)